Multicore Software-Defined Radio Architecture for GNSS Receiver Signal Processing

نویسندگان

  • Heikki Hurskainen
  • Jussi Raasakka
  • Tapani Ahonen
  • Jari Nurmi
چکیده

We describe a multicore Software-Defined Radio (SDR) architecture for Global Navigation Satellite System (GNSS) receiver implementation. A GNSS receiver picks up very low power signals from multiple satellites and then uses dedicated processing to demodulate and measure the exact timing of these signals from which the user’s position, velocity, and time (PVT) can be estimated. Three GNSS SDR architectures are discussed. (1) A hardware-based SDR that is feasible for embedded devices but relatively expensive, (2) a pure SDR approach that has high level of flexibility and low bill of material, but is not yet suited for handheld applications, and (3) a novel architecture that uses a programmable array of multiple processing cores that exhibits both flexibility and potential for mobile devices. We present the CRISP project where the multicore architecture will be realized along with numerical analysis of application requirements of the platform’s processing cores and network payload.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamically Reconfigurable Software Defined Radio for Gnss Applications

Historically, the military has used special purpose Global Positioning System (GPS) radios for radio navigation. This has the disadvantage of locking users into fixed technology solutions designed to meet a fixed set of requirements. Software Defined Radios (SDR) have the advantage of being able to easily adapt to provide new capabilities using current generation technology. Continued improveme...

متن کامل

Evaluation of Geometric and Atmospheric Doppler for GNSS-RO Payloads

To reduce the sampling rate in global navigation satellite system (GNSS)-radio occultation receivers, it is essential to establish a suitable estimation of Doppler frequency from the received signal in the satellite onboard receiver. This receiver is usually located on low earth orbit satellite and receives GNSS satellites signal in the occultation situation. The occurred Doppler on the signal ...

متن کامل

Reaching for the STARx A Software-Defined All-GNSS Solution

J A N U A R Y / F E B R U A R Y 2 0 1 4 www.insidegnss.com GNSS modernization includes not only the global coverage capabilities of GPS, GLONASS, Galileo, and BeiDou, but also regional GNSS enhancement systems such as Japan’s Quasi-Zenith Satellite System (QZSS), the Indian Regional Navigation Satellite System (IRNSS), and the European Geostationary Navigation Overlay Service (EGNOS). GNSS syst...

متن کامل

Research Tools and Architectural Considerations for Future Gnss Receivers

Satellite navigation has emerged to be one of our every-day technologies, like wireless communication. The U.S. based Global Positioning System, better known as GPS, was the first system to serve civilian users. Today, GPS is under modernization, Europe has devoted a lot of effort to build their own system, called Galileo, and activities around Russian GLONASS system are also being re-initiated...

متن کامل

Aperture Jitter Effects in Software Radio GNSS Receivers

Increasingly, software radio techniques are being used in the implementation of communications receivers in general, and GNSS receivers in particular. In such a receiver, the received signal is sampled as close to the receive antenna as possible, and all subsequent processing uses digital signal processing (DSP) techniques. The sampling clock will suffer from phase noise instabilities, leading ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Emb. Sys.

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009